
Gistable: Evaluating the Executability of
Python Code Snippets on GitHub

Eric Horton, Chris Parnin
NC State University
Raleigh, NC, USA

Email: {ewhorton, cjparnin}@ncsu.edu

Abstract—Software developers create and share code online to
demonstrate programming language concepts and programming
tasks. Code snippets can be a useful way to explain and
demonstrate a programming concept, but may not always be
directly executable. A code snippet can contain parse errors, or
fail to execute if the environment contains unmet dependencies.

This paper presents an empirical analysis of the executable
status of Python code snippets shared through the GitHub gist
system, and the ability of developers familiar with software
configuration to correctly configure and run them. We find that
75.6% of gists require non-trivial configuration to overcome
missing dependencies, configuration files, reliance on a specific
operating system, or some other environment configuration. Our
study also suggests the natural assumption developers make
about resource names when resolving configuration errors is
correct less than half the time.

We also present Gistable, a database and extensible framework
built on GitHub’s gist system, which provides executable code
snippets to enable reproducible studies in software engineering.
Gistable contains 10,259 code snippets, approximately 5,000 with
a Dockerfile to configure and execute them without import
error. Gistable is publicly available at https://github.com/gistable/
gistable.

I. INTRODUCTION

Online programming communities such as Stack Overflow
and GitHub facilitate social learning of programming and
API concepts. One common learning mechanism is to share
code snippets or examples, which contain explanations and
demonstrate how to perform a programming task or use an
API [1]. Code snippets are often reused and incorporated
in open source projects [2]. Currently, GitHub provides the
ability to create and share code snippets (called gists), with
over 300k Python gists, and over 4.5 million gists in multiple
programming languages.

This work focuses on evaluating the excitability of publicly
available Python scripts hosted on GitHub’s gist system in the
context of software configuration management (the process
of configuring system environments to properly execute a
software program). We seek to categorize the common reasons
for why gists cannot be executed in a default environment
and motivate further research on automated software config-
uration management by identifying what difficulties exist in
properly configuring an environment to enable gist execution,
specifically with regard to installing application dependencies.
Our work also provides a dataset of gists known to not be
executable and a baseline analysis against which to compare
future configuration methods.

We start by highlighting a method for performing automated
gist collection and analysis. The process involves scraping
gist URLs from the GitHub gist UI. This technique led to
an initial dataset of 10,259 gists containing over 1,700 unique
third-party library packages. We then cloned each gist and
executed it inside of a Docker container based on the official
Python image for Docker, categorizing the gist by its exit
status. To evaluate gist configuration, we attempted to infer
a correct environment specification using a naive algorithm
that approximates the first steps human developers often take
by attempting to install third-party packages by the name of
the resource imported within the gist. After running the naive
inference algorithm, we then reevaluated the executable status
of the gist.

Our findings show that correct dependency resolution and
environment configuration are often required even for small
programs. Less than 25% of gists were executable by default,
with over half failing due to ImportError in Python 2. Of
the gists which initially failed with ImportError, our naive
inference algorithm could successfully infer an environment
specification less than 50% of the time.

To gain a better understanding of the why the naive infer-
ence algorithm fails, we asked 24 developers familiar with
system configuration practices to create a Dockerfile for 10
unique gists, assigned to them at random, for which inference
failed to resolve import errors. We then used the produced
Dockerfiles and feedback from the developers to categorize
gists, focusing on the first cause of failure if any gist would
have failed inference due to more than one reason. The most
common cause is that the names of resources used in a gist do
not necessarily match the names of the packages they belong
to. Gists also frequently fail due to missing transitive depen-
dencies, missing system dependencies, configuration files, and
deprecated or non-standard packages.

Finally, we present Gistable, an extensible database and
framework used to perform our mining and analysis. Gistable
also contains the ˜5k gists with environment specifications
which allow them to be run without ImportError. We
believe that several areas of software engineering research
can benefit from a database of executable code snippets, such
as: automatic code summarization, testing, and API usage
analysis.

In summary, this paper makes the following contributions:
• An empirical analysis on the executable status of Python

https://github.com/gistable/gistable
https://github.com/gistable/gistable


gists on GitHub.
• A qualitative analysis of reasons why code may not be

executable.
• An extensible mining framework, Gistable, for obtaining

gists and environment containers from our gist database.

II. MOTIVATION

Code snippets are not always directly usable [3]: They can
contain parse errors or require system dependencies unmet
in a programming environment. As a result, the following
challenge emerges: Given a code snippet, successfully infer the
environment configuration necessary for execution. Frequently,
developers must perform this inference step manually, or rely
on the creation of configuration scripts, which in itself is a
time consuming task [4]. Unfortunately, it is not always clear
what dependencies or environment configurations are required
to execute code. Consider the following Python code snippet.
1 # Import modules from networkx and matplotlib
2 from networkx.drawing.nx_agraph import

graphviz_layout↪→

3 import matplotlib.pyplot as plot
4 import networkx as nx
5

6 # Generate the complete graph on five vertices
7 k5 = nx.complete_graph(5)
8

9 # Draw using layout generated by graphviz
10 plot.figure()
11 nx.draw(k5, graphviz_layout(k5, prog="neato"))
12 plot.savefig('/output/graph.png')
13 plot.close()

To successfully run this code fragment, several requirements
must be met. First, the environment requires graphviz, which
is a tool for visualizing graphs. Second, the environment
needs to install the Python bindings for graphviz. Third, the
environment needs the Python package for matplotlib and
networkx. Fourth, an environment variable, MPLBACKEND,
may be needed to specify a rendering engine that is compatible
with a headless VM, which does not have a graphics display.
Finally, the environment needs to ensure that an /output
directory exists.

These requirements can also be encapsulated by a working
environment configuration. One system that can be used for
specifying environment configuration is the containerization
system Docker. Docker configuration is centered around the
Dockerfile, a configuration script which tells the Docker
engine how to properly build an image that can be distributed
and run by others. We present a Dockerfile for the snippet
below.
1 FROM python:2.7.13
2 VOLUME /output
3 ENV MPLBACKEND Agg
4 RUN apt-get update
5 RUN apt-get install -y graphviz
6 RUN pip install pygraphviz
7 RUN pip install matplotlib
8 RUN pip install networkx
9 ADD snippet.py /snippets/

10 CMD python /scripts/snippet.py

III. GISTABLE DATASET AND TOOL

Gistable is a framework for collecting, evaluating and exe-
cuting self-contained programming code snippets, called gists.
The name is derived from a portmanteau of the words gists and
runnable. Gistable is designed to support empirical research
for a variety of software engineering tasks. Gistable can mine
code snippets and automatically generate a Dockerfile which
can be used to run the code snippet. Gistable provides a
command line interface for performing tasks with the mined
gists, such as checking out snippets into a working directory,
and executing the code snippet inside a docker container.

A. Research context.

Our initial evaluation of Gistable focuses on Python gists.
Python is a popular programming language and ranks among
the fastest growing languages today. It follows only Ruby and
Javascript in proportion of files in public gists [5]. Python is
frequently used for teaching introductory programming classes
as well as used by non-professional programmers, such as
scientists.

Previous research by Yang et al. [3] examined Python snip-
pets on Stack Overflow and found that only 25% were runnable
(but did not investigate why). In this work, we focus on ex-
amining gists shared on GitHub instead of Stack Overflow. As
observed by Sillito et al. [1] and Yang et al. [3], code snippets
on Stack Overflow are often mixed with exposition and code,
making it difficult to understand which segments of code are
meant to be executed in an automated analysis. Therefore,
there is strong motivation to investigate the underlying reasons
why Python code may not be executable and understand the
effort involved in configuring environments capable of running
it. These barriers can cause problems for learners and non-
professionals programmers lacking system configuration skills.

B. Mining Gists

We consider two strategies for mining gists from GitHub.
GitHub provides a REST API for public gists, however, there
are several limitations. Currently, the API provides no support
for filtering queries based on language type. Furthermore,
the API limits requests to 3000 gists when using pagination.
To overcome these limitations, it is possible to filter gists
based on creation date, meaning that all gists could be slowly
enumerated by strategically modifying the creation date as a
filter.

Another strategy is to scrape gists from the GitHub gist
search UI. The search UI allows several filters, such as star
rating, language, and keywords contained in the gist. The
UI returns at most 100 pages of 10 random gists matching
a search, allowing 1000 gists to be returned per search. By
strategically modifying search terms, it is possible to quickly
discover gists that meet the desired criteria.

For our initial population of the Gistable database, we
focused on the scraping approach, which allowed us to focus
on a particular language and to better control the quality of
gists while using less computational resources.



1 import requests
2 import json
3

4 urlbase = 'http://maps.googleapis.com/maps/api/geocode/ ⌋
json?sensor=false&address='↪→

5 urlend = 'Zurich,Switzerland'
6

7 r = requests.get(urlbase+urlend) # request to google maps
api↪→

8

9 r=r.json()
10 if r.get('results'):
11 for results in r.get('results'):
12 latlong =

results.get('geometry','').get('location','')↪→

13 latitude = latlong.get('lat','')
14 longitude = latlong.get('lng','')
15 break
16 print latitude, longitude
17

18 else:
19 print 'No results'

(a) Gist 10017416

1 FROM python:2.7.13
2 ADD snippet.py snippet.py
3 RUN ["pip", "install", "requests"]
4 CMD ["python", "snippet.py"]

(b) Dockerfile

Fig. 1: (a) Code snippet for using the Google Maps geocode API. (b) Dockerfile containing environment specification required
to run code snippet.

C. Environment Inference Algorithm

To perform environment inference, we use an approach
which builds an Abstract Syntax Tree (AST) of the gist source
code and extracts all declared imports. Extracted imports are
then filtered to remove all packages which are part of the
Python standard library. Imports are assumed to be part of
the standard library if they are present in a Docker image
containing a clean install of the Python runtime.

We use the assumption that each import represents a sin-
gle package that needs to be installed, and that the import
name matches the name used to install the package. This
is not always the case. For example, the Python package
beautifulsoup4 is imported as bs4. However, developer
practices from Section IV-C3 suggest that this is a useful
approximation because it is the natural first step a developer
takes when attempting to configure a computing environment.
Errors from packages which could not be found are ignored.
Such packages are simply not included in the final environment
configuration. This allows us to recover from potential errors
in our inference algorithm.

D. Execution Harness

To deal with the large number of gists analyzed as part
of the Gistable database, we built an execution harness on a
distributed cluster using the HashiCorp Nomad job scheduler,
which natively supports docker containers. The harness is
responsible for running all gists through the validation process
to first determine if environment inference is needed and
categorize the result of gist execution.

To isolate effects of dependencies and other system wide
configurations, we perform analysis inside independent Docker
containers. The container filesystem also guarantees consistent
starting environments.

E. Using Gistable

Gistable provides a command line tool for interacting with
gists from the Gistable database. Gists can be cloned into a
specified directory using the command gistable clone
<id> [location]. Behavior is similar to that of git
clone, and gists are checked out to the working directory
if no location is specified.

If Docker is installed and running on the system, the CLI
can also be used to directly execute a gist and display all
execution results. Just call gistable run <id>.

IV. METHODOLOGY

A. Research Questions

In this study, we investigate the following research questions
and offer the motivation for each:

RQ1 – Can gists be executed? Can the average Python gist
on GitHub be run to completion, or will it raise an exception?
If gists can be run to completion, then they already form a
database of snippets that can be used in research. However, if,
like the Python snippets from [2], gists cannot be executed by
default due to syntax errors or other runtime exceptions, then
additional investigation is needed.

RQ2 – Can a naive algorithm enable exectuable gists?
Can we apply a simple approach for resolving unmet Python
dependencies to address most runtime exceptions? If a ma-
jority of errors can be addressed by a simple resolution
strategy, then there are a limited number of cases where
automated environment configuration is needed. However, if a
simple approach cannot be used, then more research is needed
for developing a more comprehensive automatic environment
configuration technique.

RQ3 – Why might gists not be executable? If gists cannot
be executed even after resolving package dependencies, the

https://gist.github.com/philshem/10017416


natural question is why. Are they missing configuration for
environment variables, services, or other kinds of dependen-
cies? Categorizing gist execution failure and finding common
root causes may lead to insight into how to improve future
automatic environment configuration techniques.

B. Data Collection

To address our research questions, we first focused on
building a large dataset of Python gists. We used the mining
procedure outlined in Section III-B to mine 10,259 Python
gists. We limited our search criteria to gists with at least one
star [6]. Currently, GitHub contains 32,233 Python gists with
at least star—meaning our sample represents nearly 31% of
all public starred Python gists.

Figure 1 illustrates an example of a gist in our experimental
dataset and its accompanying automatically created Dockerfile.
The gist uses the Google Maps geocode api to retrieve the
latitude and longtitude coordinates of Zurich, Switzerland.
The Dockerfile bases the image off of a Python environment,
adds the gist code file, installs requests, and configures the
default command to run the gist. Note that the package, json,
does not need to be installed as it is a default system package.

C. Analysis

To answer our research questions, we used the following
procedures to analyze our data. The inference harness de-
scribed in Section III-D was used to clone gists from GitHub
and perform analysis. Using two ubuntu-16-04-x64
worker nodes sized at 2gb and running in Digital-Ocean,
inference took approximately eight hours to schedule and run
all jobs.

1) RQ1: To answer RQ1, we start by performing a base-
line analysis of gists by attempting to execute them in iso-
lated Docker containers based on the python:2.7.13 and
python:3.6.5 images. Any gist which executed without
error is considered to have exited with the code Success.
Any non successful gist is coded by the name of the error
which was raised. I.E., SyntaxError, ImportError,
NameError, etc.

2) RQ2: Research from Becker et al. [7] indicates that the
practical approach when there are multiple failures is to focus
on the first error until it is resolved, then move on. This follows
from the observation that first failures are useful because they
are informative, need to be fixed, and their resolution may
reveal deeper errors that were not apparent before.

To answer RQ2, we focus on gists where the first en-
countered failure was an ImportError and ask if we can
configure the environment with all necessary dependencies. A
naive attempt is made at performing environment inference by
applying the inference procedure described in Section III-C.
We attempt to install each inferred package with the Python
package manager pip. This is based on our findings from Sec-
tion IV-C3, which showed that attempting to install a resource
name listed in an import error is often the first step developers
take when attempting to fix environment configurations.

TABLE I: Gists per exit code in the baseline evaluation using
Python 2.7.13.

Result Count Percent

ImportError 5379 52.4%
Success 2501 24.4%
NameError 852 8.3%
SyntaxError 753 7.3%
IOError 167 1.6%
IndentationError 153 1.5%
SystemExit 115 1.1%
EOFError 94 0.9%
OSError 48 0.5%
ValueError 34 0.3%

After applying our inference algorithm, the gist is then ex-
ecuted a second time with the new environment specification,
and the evaluation results recorded under the same criteria as
for the baseline.

3) RQ3: We performed a random sampling on failing gists
in order to understand why they failed to execute. For this
analysis, we performed descriptive coding [8] and composed
memos [9], which described several reasons for a gist failing to
execute. These memos captured interesting events or properties
of environments and code snippets to promote depth and
credibility, and to frame the information needs of an automated
environment configuration technique. That is, they provide a
thick description to contextualize the findings [10].

We then solicited 24 developers familiar with Docker to
manually inspect gists. Each developer was given a disjoint
random set of 10 gists and asked to create a Dockerfile that
would enable successful execution of the snippet within a
standard time period (one and a half weeks). The developers
had between 6 months to 5 years of industry experience
and familiarity with Python. Further, the developers had been
trained in several workshops on configuration management
skills, including Ansible and Docker.

We asked the developers to rate the difficulty of creating
a Dockerfile and the steps they took to create it. We then
performed a qualitative coding exercise over the Dockerfiles
and reported steps using closed codes derived from our first
qualitative coding. During the coding process, we employed
the technique of negotiated agreement as a means to address
the reliability of coding [11]. Using this technique, the first
and second authors collaboratively code to achieve agreement
and to clarify the definitions of the codes; thus, measures such
as inter-rater agreement are not applicable.

V. EXECUTABILITY RESULTS

A. RQ1 – Can gists be executed?

Table I provides the names and counts for the most common
reasons a gist terminated when run in an isolated Python
v2.7.13 environment.

Consistent with the Yang et al. [3] study on Stack Overflow
Python snippets, we observed that only 24.4% of Python
gists were executable. The majority of gists (52.4%) failed to
execute due to an ImportError, which is typically caused
when a python dependency could not resolved or loaded.
We observed that only 17.1% of gists failed to parse (i.e.,



SyntaxError, NameError, and IndentationError.
Our observed rate of parse failures for gists is slightly lower
when compared with Yang et al.’s observed rate of 25% for
Stack Overflow snippets. We believe this may be caused by the
difficulty of distinguishing exposition from code when parsing
code snippets found on Stack Overflow [1]. For example, in a
Stack Overflow post, it could be common to include code and
output typed into an interactive shell in order to help explain
a concept, which is not directly parsable.

Finally, we observed <8% of gists failed to execute due
to some other runtime exceptions, such as IOError or
OSError. These failures could be caused by missing re-
sources, such as files, services, or platform specific depen-
dencies.

Baseline results for executing in a Python 3 environment
show 3,907 instances of SyntaxError, compared to the 753
for Python 2. In addition, the number of gists which exited
with Success dropped to 1,445. The number of gists which
exited with ModuleNotFoundError, a direct subclass of
ImportError in Python 3.6, was 3,353. While this shows
a decrease from the 5,379 in Python 2, the large set of
SyntaxError may shadow an undetermined set of gists
which would also see an ImportError.

Overall, we find that most gists are not executable in
a default Python environment. Further, the exceptions
raised when attempting to execute the gists suggests that
an insufficiently configured environment is the primary
cause.

B. RQ2 – Can a naive algorithm enable exectuable gists?

The baseline analysis for RQ1 showed the majority of
Python gists require environment configuration. To determine
if a simple algorithm is capable of resolving such errors, we
applied our inference algorithm described in Section III-C to
the 5,379 gists which failed due to ImportError using
Python 2, attempting to install all third party imports with
pip in both a Python 2.7.13 and Python 3.6.5 environment.
Python 2 is used as a baseline for ImportError due to its
lower frequency of SyntaxError.

We analyzed each gist after attempting to install all inferred
dependencies and recorded the exit status according to the
same criteria used for answering RQ2. For Python 2, 2,488
gists exited due to a reason other than ImportError, a
gain of approximately 46%. Of these gists, 1,294 finished
with Success. The remaining 1,194 finished with some error
other than ImportError. When also considering Python 3,
the number of gists which had become executable increased to
2,870. Overall, considering Python 3 resulted in an additional
428 gists becoming executable after inference when compared
with only using Python 2.

While a naive approach can infer dependencies for some
gists, it fails to do so in the majority case.

VI. EXECUTION FAILURES

To answer, RQ3 – Why might gists not be executable?, we
inspected the gists to better understand why they failed to
execute, even after applying our naive algorithm. First, we
focused on gists failing with ImportError, which was the
most common failure status. Then, we also inspected gists
which failed for other reasons, such as IOError. Finally, we
characterize the effort reported by developers when manually
creating Dockerfiles for the failing gists.

A. Gists Failing with ImportError

We report our findings in Table II. Overall, the 24 developers
participating in this study were able to submit a response for
218 out of the 240 gists assigned to them as a group. The
average number of Dockerfiles received from each developer
was 9, with a minimum of 3 and a maximum of 10.

In addition to the failures reported in Table II, 24 gists were
considered flaky. Inference of flaky gists may have failed due
to network or memory issues. One developer reported needing
to increase the memory Docker was configured to use in order
to properly install dependencies for one such gist.

Collectively, the developers indicated that they were unsuc-
cessful in creating a working Dockerfile for an additional 78
gists. The feedback we gathered for such gists showed that
even developers familiar with environment configuration may
be unable to correctly deduce the correct specification for an
arbitrary snippet of code. One developer, after referring to an
existing Dockerfile related to the gist they were working with,
wrote

I attempted to adapt the Dockerfile listed above to
run this gist, but was never able to get it working;
needless to say I would not have been able to do
it without the Dockerfile listed either; I attempted
various other ways to install the android sdk (apt-
get, etc), all of which failed; constantly ran into 404
errors with apt-add-repository; got “No space left
on device” error when running listed Dockerfile in
a virtual machine; the Dockerfile built when running
natively, but I could not find a way to use the
“monkeyrunner” command, as this gist is supposed
to be run with “monkeyrunner” and not “python”
(from what I understand); a great deal of time spent
trying futilely to get this to work.

We now focus on a selection of distinct failure causes.
Names. The most common case, as stated in Section V-B, is

when a resource name does not match the name of the package
it belongs to. Resolving this situation often required the
developer to search the package index, test multiple packages,
or query developer resources such as Stack Overflow.

For example, one gist relied on the module named i3, but
the developer found they had to install the package i3-py,
resulting in the following Dockerfile:
1 FROM python:2.7.13
2 ADD i3_focus_win.py /
3 RUN pip install i3-py argparse
4 CMD ["python", "/i3_focus_win.py"]



TABLE II: We had 24 developers familiar with environment configuration techniques attempt to manually create Dockerfiles
for 218 of the gists for which naive inference failed to resolve import errors. This table summarizes reasons for failure as
reported by the developers, focusing on the first failure reported. We manually inspected each gist in cases where no clear
reason was found by a developer, applying our own failure category if possible, or labeling the gist as unconfirmed.

Cause Count Example

Package name did not match the resource imported in the gist 70 https://gist.github.com/syl20bnr/6623972

Gist dependencies have additional dependencies which need to be resolved 23 https://gist.github.com/kennethreitz/2901479

Relies on missing C library files or headers 16 https://gist.github.com/huyx/8069261

Requires a previous version of a package due to breaking changes 15 https://gist.github.com/segphault/
9f2d7da68779a17a0890

Dependency can only be installed on a non-linux operating system 13 https://gist.github.com/mapleray/4189391

Relies on a standard package that was introduced in a later version 12 https://gist.github.com/fmasanori/4684752

Pip errored during installation, possibly timing out on large packages or
propagating an exception raised by the package

12 https://gist.github.com/willwade/5330566

Unconfirmed. The exact failure could not be narrowed down to a single category. 9

Gist is missing necessary environment configuration, such as settings files 8 https://gist.github.com/Sinkler/bfc2099235ac96937f34

Dependency wasn’t available on PyPI, nor installable via the Ubuntu aptitude
package manager.

7 https://gist.github.com/JudoWill/764262

Dependency is only supplied as part of a custom execution environment or
interpreter

6 https://gist.github.com/Utopiah/
a2b9c6ecdb24ca8fd6f4f41a9c0eb32e

Relies on a deprecated package that is no longer maintained and is no longer
available to be installed

1 https://gist.github.com/matbor/6532185

Gist is not intended to be run and imports libraries which don’t exist 1 https://gist.github.com/RichardBronosky/
454964087739a449da04

No versions are available for install 1 https://gist.github.com/mclavan/
276a2b26cab5bc22d882

System dependencies. Missing C libraries were also a
common issue. Many Python dependencies serve as bindings
into C libraries installed as a system dependency, and fail to
compile on installation because the system dependency is not
present. In some cases, a dependency failed to compile because
the Python Docker image did not include C build tools, such
as cmake, that they relied on.

One such gist made use of the Python hunspell package,
a wrapper for the C program Hunspell. The developer found
that before using pip to install hunspell, they needed to
add RUN apt-get install libhunspell-dev -y
to their Dockerfile.

Custom environments. In some cases, a dependency was
distributed as part of a separate execution environment. For
example, one developer reported that a gist relied on the bpy
module that ships with Blender. After installing Blender and
still seeing an ImportError, the developer discovered a
Stack Overflow post saying bpy can only be imported when
running in Blender’s bundled Python interpreter.

Unlisted packages. Several gists depended on packages
which were not available through the PyPI or Aptitude package
managers by default. Such packages require being installed
from a separate repo, such as an Aptitude Personal Package
Archive (PPA) or directly from a git based public repo.

In one example, a user commented on the Gist that they
had difficulty importing one of the modules, even though they
had installed the correct package.

ScissorPush?

from kivy.graphics import ScissorPush ImportError:
cannot import name ScissorPush

Resolving this issue required installing an unreleased ver-
sion of python-kivy that needed to be installed from a PPA.
1 FROM ubuntu:16.04
2 RUN apt-get update
3 RUN apt-get install -y software-properties-common

python-software-properties↪→

4 RUN add-apt-repository ppa:kivy-team/kivy-daily
5 RUN apt-get update
6 RUN apt-get install -y python-kivy
7 ADD snippet.py /snippet.py
8 CMD ["python", "/snippet.py"]

Deprecated packages. In other cases, gists relied on pack-
ages that are no longer maintained and can no longer be
installed. Common causes are not supporting SSL, which pip
now requires, not fixing known bugs which prevent installa-
tion, or even an entire package no longer being provided for
distribution.

For example, the Python Quartz package has an omission in
the manifest that prevents the requirements file from shipping
with the package source. The developer is aware of the issue,
but has declared they will not create a patch.

To fix this problem, I have to include requirements.txt
in MANIFEST.in so that the file will be shipped with
the sources.
Unfortunately, I abandoned this project a while ago
and I am currently working on a complete rewrite...

Sometimes, a package is still actively maintained, but the

https://gist.github.com/syl20bnr/6623972
https://gist.github.com/kennethreitz/2901479
https://gist.github.com/huyx/8069261
https://gist.github.com/segphault/9f2d7da68779a17a0890
https://gist.github.com/segphault/9f2d7da68779a17a0890
https://gist.github.com/mapleray/4189391
https://gist.github.com/fmasanori/4684752
https://gist.github.com/willwade/5330566
https://gist.github.com/Sinkler/bfc2099235ac96937f34
https://gist.github.com/JudoWill/764262
https://gist.github.com/Utopiah/a2b9c6ecdb24ca8fd6f4f41a9c0eb32e
https://gist.github.com/Utopiah/a2b9c6ecdb24ca8fd6f4f41a9c0eb32e
https://gist.github.com/matbor/6532185
https://gist.github.com/RichardBronosky/454964087739a449da04
https://gist.github.com/RichardBronosky/454964087739a449da04
https://gist.github.com/mclavan/276a2b26cab5bc22d882
https://gist.github.com/mclavan/276a2b26cab5bc22d882


gist relies on features from a version which had reached end-
of-life and is no longer being distributed.

Configuration settings. Some gists require additional con-
figuration files which are not provided with the gist itself. For
example, it was common to read in secret keys and values
from a non-existing app.config file in order to read a setting
such as TWITTER_API_KEY. These configuration files are
not preexisting dependencies which can be installed.

Language version. Python 3 has introduced several new
modules, like urllib.request, that are not present in
Python 2. Gists that rely on these modules must be run
in a Python 3 environment, and are incompatible with the
python:2.7.13 Docker image being used. In some cases it
may still be challenging to determine which Python version to
use. For example, pathlib is a part of the Python 3 standard
library, but was not introduced until Python 3.4, and support
for it was only added to the standard library in Python 3.6.

Operating System. Developers also saw dependencies
which could only be installed on a specific operating system,
such as Windows or macOS. One developer, when asked
to create a configuration for a gist, found that the gist was
designed to interact with the Windows registry, and reported

Packages are dependent on Windows (not Ubuntu).
Such gists cannot be run in the Ubuntu based Python image.

B. Other Failing Gists

To characterize the gists in our dataset and gain a better
understanding of how they are used on GitHub, we computed
basic metrics across all gists using tools developed for our
execution harness. Additionally, we performed an inspection
on 30 randomly selected gists from the 10.3k in our dataset
with the focus on characterizing what resources they might
rely on, including, but not limited to, dependencies.

Our random sample found that 14 out of 30 gists (46%)
did not rely on a third party package. Approximately 13% did
not import any packages, and 76.7% relied on Python library
packages. 6.7% optionally loaded a third party package if it
existed in the environment. We found that many gists rely
on connecting to networked resources, or on interacting with
configuration files and executables on the file system. Other
gists required interaction from the user in some manner, either
requiring input over stdin, command line arguments, creat-
ing an interactive prompt, or displaying information through
a graphics interface. In the worst case, a gist does nothing
because it is either recognizably not correct Python syntax, or
because it defined classes or functions but did not otherwise
execute code. This happened nearly 10% of the time.

Overall, the gists in our dataset import over 1,700 unique
third party packages and on average have 92 lines of code.

C. Developer Extraction Effort and Effectiveness

The median difficulty rating reported for configuring a gist
was 3 on a scale of 1-5, reported for 24.3% of all gists. Only
13.7% of the gists were reported as very easy to execute by
our developers, whereas 22.4% were reported as very difficult

to execute. Developers reported spending between 20 minutes
to 2 hours to setup the environment for executing each gist.

Of the 140 gists developers found an environment configu-
ration for, the average Dockerfile was less than 10 lines and
installed less than 5 packages. However, we found that not all
of the submitted Dockerfiles were capable of executing their
gists without ImportError. For example, one developer
submitted the following Dockerfile, claiming that the gist ran
without any errors in the provided environment.
1 FROM python:2.7.13
2 ADD https://gist.githubusercontent.com/ ⌋

awesomebytes/ ⌋
cb5a28fa8d4db3fc1ba51894663c1aed/raw/ ⌋
cba597a5219d807c5e4940e9d2018d47b5eca809/ ⌋
watson_ros_publish_string
/snippet8.py

↪→

↪→

↪→

↪→

↪→

3 RUN pip install ws4py
4 CMD ["python","/snippet8.py"]

However, we found that executing the gist still failed
with the configuration error ImportError: No module
named rospy. One interpretation is that not only can this
be a time-consuming task for developers, but the process can
be also error-prone.

D. Developer Responses

Section VI revealed common properties of gists that made
environment configuration difficult. We now highlight a selec-
tion of developer responses which illuminate the process that
developers employ when faced with these challenges.

Version errors. Developers reported several experiences
related to resolving errors that were present due to mismatches
in versions of dependencies and code.

django was the only import required. But that didnt
simply resolve the error. There was a import error
for CompatCookie. Tried in python 3 as well but
no luck. Later found out from django release notes
that it was deprecated after v1.4. So tried to pip
install older version of django and was finally able
to resolve the import error. Docker file builds and
runs without any error.

Another developer described how the requirements could
shift depending on the version of a dependency used.

Spent over an hour to find the imports needed for
text.blob. It was replaced to textblob from version
0.7.1 and when I tried the lower version I re-
ceived another error that required dependencies on
a higher version.

Unlisted or unknown dependencies. Developers reported
several instances where they had difficulty determining the
provenance of a dependency.

1. Git clone basic-python-logger repo from
https://github.com/vehrka/basic-python-logger
(Have to google and find out that basiclogger.py
is not a module, but rather a script wrote by the
creator of the Gist itself) 2. pip install psycopg2,
pandas, sqlalchemy for satisfying the dependencies.
3. Upon doing this, the images builds successfully



Another developer had difficult working with a cloud
provider package.

Couldn’t find clouddns module. Couldn’t solve de-
pendency. Spent 2 hours on it.

Resource limitations. Several developers reported experi-
ences related to memory or disk limitations on their personal
computers when building environments.

MEMORY ERROR while installing keras and pys-
park resolved by –no-cache-dir flag

E. Summary

We conclude RQ3 with the following observation:

Python gists often require non-trivial environment config-
uration in order to run. There are multiple reasons why
configuration for any particular gist might be difficult, but
the most common challenges are finding dependencies
without obvious names and installing dependencies with
transitive dependence on system modules.

VII. DISCUSSION

A. Towards automated environment configuration and beyond

While the inference procedures presented in Gistable are
simple, we show that they successfully lead to a correct
environment specification in a number of cases. This indicates
that reliable environment inference is possible, and highlights
areas of research where techniques can improve. For example,
we may consider combining dynamic inspection of packages
and machine learning algorithms for inferring possible envi-
ronment specifications.

Although we focus on Python gists, we believe our insights
can generalize to other programming languages. For example,
dependency on system build tools can also be a problem in
the Node.js ecosystem when packages compile native addons.
Common compilation troubles in Node eventually prompted
Microsoft to publish developer guidelines 1.

Given a language which supports third-party packages, our
approach only assumes two things. First, that packages have
a set of named resources that they make available for use by
client code. Second, that the identifier for a package resource
used by client code has at least a substring match for a resource
provided by the package. This is the case for popular languages
like Javascript and Ruby, and so we believe that our approach
will generalize to these, and similar, languages.

Furthermore, our inference procedure only requires a code
snippet, and could easily be modified to work with another
context, such as code snippets in Stack Overflow answers, blog
posts [12], or online documentation [13]. Gistable focuses on
configuring and running single file scripts. However, many
projects have a large number of interacting tools that make
configuration challenging. We believe insights from our work
can inform configuration techniques for larger projects in the
long-term.

1https://github.com/Microsoft/nodejs-guidelines

B. Challenges in mining gists

Querying for unique gists isn’t directly possible: Instead,
we rely on manipulation of search parameters in the GitHub
UI to return results. On subsequent runs, the gists returned by a
UI search are often different, allowing the use of a dictionary
approach for collecting unique gists by ID. However, some
gists may still be duplicates, either by forking or simple
duplication of content. Forked gists have metadata available
indicating the origin, but, in the worst case, it is generally
undecidable if two gists are equivalent.

Gists can be complex: While most of them are relatively
simple, there is no requirement that a gist consist of only one
file, or even of files in a single programming language. If a
gist has more than one file, the entry point is often ambiguous,
unless the programming language runtime supports running a
default file, and such a file exists in the gist. We discarded
gists with more than one file to avoid having to deal with this
situation.

C. Challenges in automated configuration inference

There are several challenges identified by our work.
Name resolution: An important task in automatically

creating an environment specification from code is: given a
code snippet, infer the set of installable packages associated
with the code. Luckily, package import statements within
the code snippet can help; however, there are still several
complications that must be resolved. In the simplest case,
many package names may not match the name they are
imported by (e.g. the i3/i3-py mismatch encountered by
one of the developers participating in the study).

Another consideration is that many gists have imports struc-
tured as follows: import kazoo.client. In our evalua-
tion, the naive algorithm attempts to install kazoo.client,
and fails. The actual package is kazoo. However, in other
cases, like zope.interface, the appropriate package name
is indeed zope.interface. Finally, it could be possible
that some code snippets are incomplete; that is, they may omit
import statements for packages being used in code.

A first step to addressing this challenge may be to prepro-
cess known packages by extracting a list of resources that
each exports. When performing inference, resources might be
mapped to installable packages by a reverse look up. However,
this introduces its own challenge of dealing with packages
which have conflicting resource names.

System Dependencies: Other packages have implicit de-
pendence on system environment configuration or other system
packages. Unfortunately, this type of error often presents itself
as a compile time error when a header file cannot be found.
Header files, like package resources, do not necessarily have
a name related to their project. Like the Python package name
resolution challenge, this could be addressed by preprocessing
and reverse look up. Another option is to analyze existing con-
figuration scripts for Python projects and perform association
rule mining to infer dependence between a Python package
and a system dependency.



Language Version: Even with a gist consisting of a single
snippet in the desired language, it is often non-trivial to decide
which language version to use. For our Python gists, most
of them are capable of running successfully with Python 2.
However, reported instances of SyntaxError may be due
to use of syntax created in Python 3. Gists can be checked for
syntax errors by attempting to compile them, so Python 2 or
Python 3 syntax compatibility could be checked by compiling
under each language runtime. Python 3 dependence may also
be inferred by checking gist imports against the Python 3
standard libarary.

Unlisted and Deprecated Packages: Packages may not be
installable from a general package repository, like the Python
package PyTorch. In this case, it may be possible to install
directly from a git based repo, if one can be inferred from
previously seen configuration scripts.

D. Future Applications

While the focus of our paper was evaluating the executabil-
ity of Python gists, we envision several additional research
applications for Gistable.
• Text summarization of tasks: Recent work ([14], [15],

[16], [17]) has focused on performing semantic code sum-
marization. Because gists typically correspond to idiomatic
programming uses and tasks, there is an opportunity to use
gists as a dataset for learning models which support semantic
summarization of code.

• API usage analysis: We observed over 1,700 unique third-
party python packages in our initial version of Gistable. This
suggests that gists can provide a rich source of information
for mining and understanding how APIs are used in practice
by programmers.

• Test input generation: Gists often have hard-coded input
text for running the code example. An interesting research
opportunity would be to use gists as a benchmark for
generating test inputs that can also successfully run (or fail)
in a gists.

• Configuration repair: In addition to inference of configura-
tion environments, it is possible to support research in repair
of configuration scripts [18]. For example, if a user updates
the code to use new library, pushes changes to production,
but did not update the Dockerfile [19], an exception can be
thrown. However, a configuration repair tool can suggest a
repair that updates the environment specification to use the
correct version of the package: e.g., "networkx==2.0",
which eliminates the exception.

• Resource repair: Gists may have external resources, such
as URLs, or publicly hosted APIs, such as the Google Maps
API. One interesting application would be to study the decay
of resources overtime (bitrot). Further, if resources or API
URLs change, is it possible to repair the invalid resources
and code?

• Understanding the Python community’s use of gists:
Wang et al. [5] studied the use of Public gists on GitHub,
observing a variety of uses, but did not focus on usage
categories per language or file type. We observed several

different usage patterns for Python gists in the Gistable
database. Future research can inspect and categorize the
types of practices that emerge from creating and sharing
public gists in the Python community.

VIII. LIMITATIONS

Our analysis may overestimate the number of executable
snippets. For example, a gist may define only a single func-
tion containing all code, but never call it. So long as the
function definition succeeds, the gist is marked as successful
regardless of whether or not the code works. Any additional
dependency errors caused by executing the function will not be
triggered. Further, our analysis may misclassify an exception.
For example, it is possible for a gist to implicitly hide import
errors by catching them and then raising an error of a different
type. Future analysis can use several measures to increase the
certainty of successfully execution: annotating gists with test
assertions, increasing path coverage of executed gists, manual
inspection and verification, and iteratively fixing configuration
issues and evaluating gist execution.

Another concern is that running a gist once will only
produce the first fatal error encountered, although the gist
may have more than one. As a result, we may underestimate
the distribution of some category of errors. However, research
from Becker et al. [7] argues that the practical approach in
such a case is to focus on the first failure encountered, as this
mirrors how developers typically resolve errors.

We caution readers to not overgeneralize our results. While
we analyzed a large sample of Python gists, these results may
not extend to other programming languages. Numerous factors,
such as the experience of programmers, the quality of modules
and package management, the degree of third-party modules
usage, and language design can influence how executable a
code snippet is in practice. In other languages and ecosystems,
these factors may be less of a concern. Further, we examine
public gists, which may differ from private gists.

Our environment inference algorithm can have several lim-
itations. Even if all dependencies install correctly and gist
execution succeeds, there is no guarantee the package API will
not undergo a breaking change between the time the Dockerfile
is created and the time the image is built.

IX. RELATED WORK

The work by Yang et al. [3] is the closest related work in
terms of research approach and methodology. Yang et al. [3]
examined Python snippets on Stack Overflow and found that
75% were parsable and only 25% were runnable. In this paper,
our work differs in several important ways. First, our primary
focus is on the ability to execute Python snippets, whereas
Yang et al. were primarily focused on the ability to parse
snippets. Second, we investigate the effectiveness of a naive
inference algorithm in recovering an execution environment
for the snippets. Third, we manually construct execution
environments and characterize reasons why code may not be
executable. Finally, our research context differs in that we
examine gists shared on GitHub instead of code snippets found



in Stack Overflow answers. Overall, our research complements
Yang et al.’s [3] work in understanding challenges for sharing
and using snippets on the web, while providing new directions
for research in automated configuration inference.

Several researchers have characterized the buildability of
software projects. Sulı́r and Porubän [20] performed a study
on 7,200 Java projects and studied the ability to automatically
build them by attempting a maven or ant build in a virtual
machine. They found that more than 38% of builds ended in
failure. The authors identified that the largest portion of errors
are dependency-related. Incidentally, Urli et al.’s study [21] on
program repair of Java programs is related to our work. Urli
et al. found that by attempting to automatically build 1,609
Java projects on GitHub with Maven, they could only reliably
reproduce 31.82% of test failures due to the complexity of
mimicking configuration for test environments. A notable
difference is that our work focuses on automated configuration
inference, whereas Urli et al. focus on repairing Java code
in order to pass test failures and thus does not investigate
why projects could not build or run tests. Buildability and
executability are related yet distinct concerns in software
maintenance. First, build failures can be associated with
difficulty inherent in build maintenance that is independent
of reproduction. For instance, McIntosh et al. [4] find that
the effort involved in maintaining the build configuration can
introduce 27% overhead on source code development and a
44% overhead on test development. Such high effort could
increase the odds of out-of-date or non-buildable projects.
Second, while building large and complex projects can be
daunting, this process does not necessarily run the code, which
can require further environment specifications. Finally, our
research context differs from buildability of software projects
in that we are interested in automatically executing isolated
code snippets without build specifications, which is common
in learning or documentation contexts.

German et al. [22] describe multiple problems associated
with managing and specifying dependencies, including down-
loading, building, and satisfying inter-dependent artifacts,
which may not always be explicitly documented. They propose
a framework for categorizing dependency types and a method
for building and visualizing an inter-dependency graph of a
package. Lungu and colleagues [23] note that dependencies
also exist between projects in a software ecosystem. They
propose a model which can capture inter-project dependen-
cies. In our work, we are interested in characterizing both
dependencies as well as other environment resources that when
absent can prevent code from being executable. We believe our
empirical findings complement these models and together, they
can be used to inform the design of an automated configuration
inference tool.

X. CONCLUSION

Code snippets can be a useful way to explain and demon-
strate a programming concept, but may not always be directly
executable. We investigated the executability of Python gists

hosted on GitHub and the ability for a naive inference algo-
rithm to recover a Dockerfile capable of executing the Python
gist. Finally, we investigated the types of execution failures
encountered when running Python gists and the effort involved
in manually creating a Dockerfile able to run a gist.

Overall, we find that most gists are not executable in a de-
fault Python environment. Further, the exceptions raised when
attempting to execute the gists suggests that an insufficiently
configured environment is the primary cause.

Our inference algorithm shows that, at least in some
cases, correct application environment configurations can be
automatically recovered. While a naive approach can infer
dependencies for some gists, it fails to do so in the majority
case. Additional strategies promise greater success, and will
be the subject of future research.

Our investigation of Python gists finds that they often
require non-trivial environment configuration in order to run.
There are multiple reasons why configuration for any partic-
ular gist might be difficult, but the most common challenges
are finding dependencies without obvious names and installing
dependencies with transitive dependence on system modules.

Finally, we envision multiple applications for Gistable that
extend beyond empirical studies of executability. Gistable
can automatically configure and execute approximately 5,000
public Python gists hosted on GitHub. Each gist has an accom-
panying Dockerfile which can be used to build a Docker image
based off of the python:2.7.13 image which contains
both the gist and its dependencies. Running the Docker image
executes the gist without ImportError. Gistable also ships
with a simple command line utility for cloning gists in the
dataset, and building and running Docker images.

ACKNOWLEDGEMENTS

This work is funded in part by the NSF grant #1814798.

REFERENCES

[1] J. Sillito, F. Maurer, S. M. Nasehi, and C. Burns, “What makes a
good code example?: A study of programming q&a in stackoverflow,”
in Proceedings of the 2012 IEEE International Conference on
Software Maintenance (ICSM), ser. ICSM ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 25–34. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2012.6405249

[2] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack overflow
in github: Any snippets there?” in Proceedings of the 14th
International Conference on Mining Software Repositories, ser. MSR
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 280–290. [Online].
Available: https://doi.org/10.1109/MSR.2017.13

[3] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
An analysis of stack overflow code snippets,” in Proceedings of the
13th International Conference on Mining Software Repositories, ser.
MSR ’16. New York, NY, USA: ACM, 2016, pp. 391–402. [Online].
Available: http://doi.acm.org/10.1145/2901739.2901767

[4] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proceedings of the
33rd International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 141–150. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985813

[5] W. Wang, G. Poo-Caamaño, E. Wilde, and D. M. German, “What is the
gist?: Understanding the use of public gists on github,” in Proceedings
of the 12th Working Conference on Mining Software Repositories, ser.
MSR ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 314–323.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2820518.2820556

http://dx.doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1109/MSR.2017.13
http://doi.acm.org/10.1145/2901739.2901767
http://doi.acm.org/10.1145/1985793.1985813
http://dl.acm.org/citation.cfm?id=2820518.2820556


[6] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 92–101. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597074

[7] B. A. Becker, C. Murray, T. Tao, C. Song, R. McCartney, and
K. Sanders, “Fix the first, ignore the rest: Dealing with multiple
compiler error messages,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’18. New
York, NY, USA: ACM, 2018, pp. 634–639. [Online]. Available:
http://doi.acm.org/10.1145/3159450.3159453

[8] J. Saldaña, The Coding Manual for Qualitative Researchers. SAGE
Publications, 2009.

[9] M. Birks, Y. Chapman, and K. Francis, “Memoing in qualitative re-
search: Probing data and processes,” Journal of Research in Nursing,
vol. 13, no. 1, pp. 68–75, jan 2008.

[10] J. Ponterotto, “Brief note on the origins, evolution, and meaning of the
qualitative research concept thick description,” The Qualitative Report,
vol. 11, no. 3, 2006.

[11] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding
in-depth semistructured interviews,” Sociological Methods & Research,
vol. 42, no. 3, pp. 294–320, aug 2013.

[12] C. Parnin, C. Treude, and M. A. Storey, “Blogging developer knowledge:
Motivations, challenges, and future directions,” in 2013 21st Interna-
tional Conference on Program Comprehension (ICPC), May 2013, pp.
211–214.

[13] C. Treude and M. Aniche, “Where does google find api documentation?”
in IEEE/ACM 2nd International Workshop on API Usage and Evolution,
ser. WAPI’18. New York, NY, USA: ACM, 2018.

[14] A. Lucia, M. Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Labeling source code with information retrieval methods: An empirical
study,” Empirical Softw. Engg., vol. 19, no. 5, pp. 1383–1420, Oct.
2014. [Online]. Available: http://dx.doi.org/10.1007/s10664-013-9285-5

[15] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use
of automated text summarization techniques for summarizing source
code,” in Proceedings of the 2010 17th Working Conference on
Reverse Engineering, ser. WCRE ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 35–44. [Online]. Available:
http://dx.doi.org/10.1109/WCRE.2010.13

[16] P. W. McBurney, C. Liu, C. McMillan, and T. Weninger, “Improving
topic model source code summarization,” in Proceedings of the 22Nd
International Conference on Program Comprehension, ser. ICPC 2014.
New York, NY, USA: ACM, 2014, pp. 291–294. [Online]. Available:
http://doi.acm.org/10.1145/2597008.2597793

[17] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, “Evaluating
source code summarization techniques: Replication and expansion,” in
2013 21st International Conference on Program Comprehension (ICPC),
May 2013, pp. 13–22.

[18] A. Weiss, A. Guha, and Y. Brun, “Tortoise: Interactive system
configuration repair,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 625–636. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155641

[19] G. Schermann, S. Zumberi, and J. Cito, “Structured Information on
State and Evolution of Dockerfiles on GitHub,” Mar. 2018, Detailed
information on the dataset can be found in the paper ”Structured
Information on State and Evolution of Dockerfiles on GitHub” accepted
at the Data Showcase Track of the International Conference on Mining
Software Repositories 2018 (MSR 2018). The software used to collect
the dataset and instructions on how to use the dataset can be found in
the paper’s online appendix: https://github.com/sealuzh/msr18-docker-
dataset. [Online]. Available: https://doi.org/10.5281/zenodo.1200869

[20] M. Sulı́r and J. Porubän, “A quantitative study of java software
buildability,” in Proceedings of the 7th International Workshop on
Evaluation and Usability of Programming Languages and Tools, ser.
PLATEAU 2016. New York, NY, USA: ACM, 2016, pp. 17–25.
[Online]. Available: http://doi.acm.org/10.1145/3001878.3001882

[21] L. S. M. M. Simon Urli, Zhongxing Yu, “How to design a program
repair bot? insights from the repairnator project,” in 40th International
Conference on Software Engineering, Track Software Engineering in
Practice (SEIP), ser. ICSE 2018, 2018, pp. 1–10. [Online]. Available:
https://hal.inria.fr/hal-01691496/document

[22] D. M. German, J. M. Gonzalez-Barahona, and G. Robles, “A model to
understand the building and running inter-dependencies of software,” in

14th Working Conference on Reverse Engineering (WCRE 2007), Oct
2007, pp. 140–149.

[23] M. Lungu, R. Robbes, and M. Lanza, “Recovering inter-project
dependencies in software ecosystems,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’10. New York, NY, USA: ACM, 2010, pp. 309–312. [Online].
Available: http://doi.acm.org/10.1145/1858996.1859058

http://doi.acm.org/10.1145/2597073.2597074
http://doi.acm.org/10.1145/3159450.3159453
http://dx.doi.org/10.1007/s10664-013-9285-5
http://dx.doi.org/10.1109/WCRE.2010.13
http://doi.acm.org/10.1145/2597008.2597793
http://dl.acm.org/citation.cfm?id=3155562.3155641
https://doi.org/10.5281/zenodo.1200869
http://doi.acm.org/10.1145/3001878.3001882
https://hal.inria.fr/hal-01691496/document
http://doi.acm.org/10.1145/1858996.1859058

	Introduction
	Motivation
	Gistable Dataset and Tool
	Research context.
	Mining Gists
	Environment Inference Algorithm
	Execution Harness
	Using Gistable

	Methodology
	Research Questions
	Data Collection
	Analysis
	RQ1
	RQ2
	RQ3


	Executability Results
	RQ1 – Can gists be executed?
	RQ2 – Can a naive algorithm enable exectuable gists?

	Execution Failures
	Gists Failing with ImportError
	Other Failing Gists
	Developer Extraction Effort and Effectiveness
	Developer Responses
	Summary

	Discussion
	Towards automated environment configuration and beyond
	Challenges in mining gists
	Challenges in automated configuration inference
	Future Applications

	Limitations
	Related Work
	Conclusion
	References

